LABORATORY FOR MOLECULAR MEDICINE: VARIANT ASSESSMENTS

Variant assessment is the process through which information about a novel or previously identified variant is compiled and reviewed to assign a pathogenicity classification based on established criteria. Please see our publication (Duzkale 2013; PubMed ID 24033266) for additional details on variant classification.

PRIMARY COMPONENTS:

1. **Variant spectrum**
 - Variant spectrum for the gene is reviewed to determine if the variant type is known to be or consistent with established disease-causing variants
 - *Example*: Variant types with a strong correlation or established pathogenicity are more likely to be disease-causing

2. **Variant frequency**
 - The frequency of each variant is estimated or determined based on presence or absence from populations of reportedly “unaffected” individuals
 - Includes NHLBI Exome Variant Server, 1000 Genomes Project, dbSNP, and other databases
 - *Example*: Variants found at higher frequencies are less likely to be disease-causing

3. **Cases and segregation studies**
 - All cases with each variant are compiled from literature and internal data to review phenotype and presentation information
 - Family studies are reviewed to determine if a variant segregates with disease
 - *Example*: Variants occurring in multiple families and segregate with disease are more likely to be disease-causing

4. **Functional studies**
 - In vivo/animal studies can provide supportive information
 - Data must be interpreted with care due to limitations translating study results to actual biological function

SECONDARY COMPONENTS:

1. **Conservation/computational models**
 - Review of conservation, biochemical properties, and prediction models
 - Data must be interpreted with care since most programs have not been clinically validated
 - *Example* – Variant amino acid is present in other mammals, suggesting that this change may be tolerated

2. **Clinical correlations**
 - Review of patient phenotype with features expected for gene
 - *Example* – An individual fulfilling Ghent criteria for Marfan syndrome supports the pathogenicity of a novel variant in *FBN1*

ASSIGNMENT OF VARIANT CLASSIFICATION:

1. **Evidence Review**
 - Evidence is weighted as supportive of pathogenic, neutral, or supportive of benign
 - Clinical information on current and prior cases is reconciled with available evidence

2. **Variant Classification**
 - Variant is assigned the classification based on overall summary of weighted evidence
 - Variant classifications are reviewed and may change with additional evidence

<table>
<thead>
<tr>
<th>BENIGN</th>
<th>LIKELY BENIGN</th>
<th>VARIANT OF UNCERTAIN SIGNIFICANCE</th>
<th>LIKELY PATHOGENIC</th>
<th>PATHOGENIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Variant frequent in the general population</td>
<td>– Variant seen at a low frequency in general population</td>
<td>– Limited or conflicting data</td>
<td>– Low frequency</td>
<td>– Strong segregation and/or functional evidence</td>
</tr>
<tr>
<td></td>
<td>– Variant found in other mammals</td>
<td></td>
<td>– Mod. segregation with disease</td>
<td>– Variant type established as disease-causing</td>
</tr>
<tr>
<td></td>
<td>– Opposing info</td>
<td></td>
<td>– Clinical correlation</td>
<td>– De novo variant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Functional evid.</td>
<td>– De novo with paternity confirmed</td>
</tr>
</tbody>
</table>